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Summary 
 
Population data in the European Union (EU) are available at commune level. More detailed data are 
available only for a few countries. CORINE Land Cover (CLC) provides land cover information with a 
medium resolution. This paper describes several approaches to combine commune population data with 
CLC to produce a EU-wide population density grid. The results are distributed by the European Environment 
Agency (EEA). The information provided by the point survey LUCAS (Land Use/Cover Area frame Survey) 
has been integrated to improve the coefficients of the model. An assessment, carried out for Austria with the 
help of a more accurate 1-km population density grid, suggests that CLC allows reducing by approximately 
50% the inaccuracy of the homogeneous representation of population density per commune. A method 
based on logit regression gives the best results among the approaches tested, but the accuracy is similar for 
several approaches. 
 
Keywords : Population density, Dasymetric mapping, downscaling, CORINE Land Cover (CLC), Modifiable 
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1 Introduction 
 
Harmonised population density data for the European Union (EU) are available at the level of the commune. 
Some countries have more detailed geo-referenced data, but for EU-wide studies the communal level is the 
most detailed available. Data by commune may be insufficient for planning or modelling purposes. For 
example such data are not suitable to reply to questions of the type “how many inhabitants live within a 
distance of 2 km around industrial sites of a given type?”.  
 
There is a need to downscale population density, i.e. to represent it in smaller geographical units, for 
example cells of 1 km2 or 1 ha. There is a range of possible approaches for downscaling; Bierkens et al. 
(2000) mention a variety of downscaling methods for general purpose, several of them based on 
deterministic and stochastic functions, possibly combined with mechanistic models. Downscaling can be 
seen as a special case of the Modifiable Areal Interpolation Unit (MAUP), i.e. the transfer of data available 
for a given set of geographical units into an incompatible set (Openshaw, 1984) 
 
Eicher and Brewer (2001) mention three types of methods to produce density (dasymetric) maps. The binary 
method (Langford, 1991) assigns the whole population to one land cover class (usually urban or artificial 
land cover). The three-class method attributes some density to agricultural and forest classes. The limiting 
variable method first uses simple areal weighting; densities are then modified by putting thresholds to land 
cover classes and redistributing exceeding population to other classes. In the example analysed in the paper 
by Eicher and Brewer, the limiting variable method gives the best results. Other methods (Flowerdew and 
Green, 1989, Yuan et al, 1997, Briggs et al, 2007) use a regression model to obtain the population density of 
each class that best matches the data. Coefficients are applied later to adjust the total population assigned 
to each administrative unit (commune) to the known population.  
 
Wu and Murray (2005) use a cokriging method in a small test area in Ohio. This method has some 
advantages, such as giving a measure of the variance of the estimate in each location, given the underlying 
model, but presents computational and data availability problems with a large data set, as the one we 
consider here.  
 
Some authors have produced more precise downscaled population density layers using streets and roads 
networks in a small area, such as a county (Xie, 1995). A similar approach is adopted by Reibel and Bufalino 
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(2005) and by Mrozinski and Cromley (1999), who assume that the population is concentrated in a buffer 
around a road network. This type of methods can be interesting at EU level with the help of navigation 
databases such as Tele-Atlas or Navteq, but it has not yet been tackled.   
Another possible approach to the downscaling problem might be based on the EM algorithm (Dempster, 
1977, Ambroise and Govaert, 1998). The EM algorithm has been tested with CLC data and we refer to it as 
CLC-EM in this paper. An alternative method, that we call here CLC iterative, is applied by Gallego and 
Peedell (2001). The “CLC-iterative” density map has been assessed by Thieken et al (2006), who conclude 
that the obtained density map gives realistic population figures for the areas flooded in Germany in the flood 
events of 1999 and 2002. However this paper finds, by comparing data with the population of the 5-digit 
postal codes, that the CLC-iterative method generally over-estimates the population in non-urban land cover 
classes in communes containing also an important urban nucleus.  
 
Langford (2007) fairly claims that complex areal interpolation methods to produce dasymetric population 
maps is a major obstacle for the use of such methods by many users. The attempt of this paper is to 
document a ready-to-use raster layer of population density with 1 ha resolution. The user does not need to 
produce his own interpolation. The grid can be obtained free of charge, for non-commercial purpose, from 
the European Environmental Agency (EEA). More information on the way to obtain the grid can be found in 
the EEA data warehouse (http://dataservice.eea.europa.eu/). The methods used for the previous versions of 
the population raster map are also summarised. The result of each downscaling procedure presented here is 
a GIS layer in raster format with 100 m resolution. We attribute to each 1 ha pixel an estimated population 
density. This layer has some conceptual differences with the world-wide products LandScanTM population 
density grid (Dobson et al., 2000, Bhaduri et al., 2002) and the Gridded population of the world (GPW) of the 
Center for International Earth Science Information Network (CIESIN, 2005): In our case the area covered is 
smaller but the spatial resolution is finer. LandScan refers to the “ambient population”, a time-weighted 
average of the number of people in a given area, while our grid locates each person in his/her dwelling (even 
if it is a circumstantial dwelling for a very short time). The population dataset presented by Bengtsson et al 
(2006) also includes projections of the spatial distribution of population until 2100.  
 
A different approach to the problem, mainly for application at national or sub-national level, is designing the 
census enumeration areas optimizing its compatibility with different applications, to minimize the need of 
MAUP procedures (Martin, 1998). 
 

2 Data  
 
Several layers of information are combined for this exercise: Commune data (population and geographic 
boundaries), a land cover map, and a fine scale point survey: 
 
2.1 Commune data.  
 
The area covered by the study includes the 27 Member States of the European Union except Cyprus, 
peripheral islands and overseas territories are excluded. Croatia is included. Altogether an area around 4.3 
million km2 with more than 480 Million inhabitants. For Switzerland and Norway the population data were 
available, but the land cover information was missing in our database.  
Population data from the 2001 census are available for each commune of the study area. The administrative 
units we refer to as “communes” in this paper correspond to the so-called Eurostat LAU-2 level (Local 
Administrative Units). Population data and commune boundaries were provided by Eurostat.  
 
The number of communes in the study area is slightly over 114.000. The average area of a commune is 
about 36 km2. The average commune area per country ranges from less than 15 km2 in Slovakia, Czech 
Republic and France to more than 1500 km2 in Sweden. Downscaling is more important for large communes. 
It is therefore meaningful to mention that, although only 6% of the communes have an area above 100 km2, 
they represent 49% of the study area and 33% of the population. 
 
 
2.2 CORINE Land Cover 2000 
 
The land cover map we have used is CORINE Land Cover 2000 (CLC), produced by photo-interpretation of 
Landsat ETM+ satellite images (panchromatic + multispectral resampled with a resolution of 12.5 m.) with 
common rules in all the countries of the study area (CEC-EEA, 1993, JRC-EEA, 2005, Perdigão and Annoni, 
1997). The nomenclature of CLC has 44 classes. The minimum mapping unit of CLC is 25 ha; smaller 
patches are included in polygons labeled with the dominant land cover type. If there is no clearly dominant 
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land cover type in a polygon, it is coded as “heterogeneous”. The classes labeled as “heterogeneous” are 
important (around 11% of the study area) due to the relatively coarse scale of CLC. A raster version with 
cells of 1 ha has been used in projection Lambert Azimuthal Equal Area with the parameters recommended 
for the EU by the INSPIRE initiative (Annoni et al., 2001) 
 
For a large number of communes, CLC2000 does not report any urban area. In most cases this is because 
the communes do not contain any urban patch larger than 25 ha. This happens for 29% of the communes, 
that correspond to 16.6% of the total area and 2.9% of the total population. These communes may require a 
specific consideration when CLC2000 data are combined with population data.   
 
 
2.3 LUCAS point data 
 
The LUCAS-2001 sample has a two-stage systematic design (Delincé, 2001, Bettio et al, 2002). Primary 
Sampling units (PSU) are selected with a systematic grid of 18 km without stratification. Each PSU is a 
cluster of 10 points following a 5x2 rectangular pattern with a 300 m step. To be consistent with the ground 
work definitions, we can conceive the “point” as a circle of 3 m diameter. LUCAS-2001 only covers the 15 
countries that were member states in 2001 (EU15). 
LUCAS has a double nomenclature: each point has a land cover code (57 classes) and a land use code (14 
classes). For this work the land use code has been used, focusing in particular on the class “residential”. 
2245 LUCAS points were residential (2.4% of the total sample). Therefore LUCAS estimates the area with 
residential use in EU15 to be around 75,000 km2.  
 

3 Areal weighting: an iterative method to estimate land cover 
coefficients.  

 
We summarise in this section the method used by Gallego and Peedell (2001) to combine population data 
per commune from the 1991 census with CLC90 (the so-called CORINE Land Cover 1990, although the 
reference date changes from one country to another). This was the first version of the population grid 
distributed by the EEA. We considered several predefined categories of communes (strata), and we 
supposed that the population density can be expressed as:  

mchcm WUY =       (1) 
Where Ycm is the density of population for land cover type c in commune m , that belongs to stratum h. The 
coefficient Uch depends on the land cover class of CLC2000. Wm is a factor that ensures that the total 
population attributed to pixels in each commune matches the known commune population.  
Communes have been stratified in each NUTS2 region applying a simple criterion:  
1. Dense communes: population density higher than twice the average density in its region; 
2. Less dense: population density lower than twice the average density in its region. Some urban area is 

reported in CORINE Land Cover;  
3. Sparse population: No urban area reported in CORINE Land Cover.  
 
This model is a version of modified areal weighting, and implies several simplifying assumptions:  

• The population density is supposed to be the same for all pixels in the same commune and same 
CLC class. Other possible co-variables, such as altitude or the distance to an urban nucleus are not 
taken into account. 

• the ratio between the population density of two land cover classes is supposed to be constant inside 
each stratum. 

These assumptions are not fully realistic, but allow to improve in a simple way the representation of the 
population density.  
If the coefficients Uc are known, we have  

∑=
c

cmmcm YSX                                        (2) 

Where Xm is the  population in commune m  and Scm is the area of land cover type c in commune m.  
We easily get Wm: and Ycm: 

∑=
c

mchmcm WUSX         ⇒         
∑

=

c
chcm

m
m US

XW         (3) 
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∑
=

c
chcm

m
chcm US

XUY        (4) 

This disaggregation had been previously carried out with an initial set of coefficients provided by the EEA for 
an aggregated nomenclature of CORINE Land Cover (Table 1).   
 

 

Table 1: grouped CORINE Land Cover classes and initial coefficients 
 
3.1 Disaggregation of regional data to assess the validity of weighting coefficients.  
 
The best way to assess the disaggregation of the commune populations would be comparing the results with 
data at infra-commune level, but such data are not available at EU level. One possible way to overcome this 
limitation is:  

1. Consider a set of regions (larger than the communes), and pretend that we only know the data at 
regional level.  

2. Disaggregate regional data with CLC using a given set of coefficients Uch .  
3. Consider now the communes and estimate the population of commune m by adding the population 

attributed in the previous step to all pixels in the commune.   
4. Compare with the known population per commune and compute a disagreement indicator.  
5. Modify the coefficients Uch  to reduce the disagreement and restart step 2 until the results become 

stable.  
 
Xr  is the population in region r.   
Scr  is the area of land cover type c in region r.   
Ycr is the density of population we attribute to land cover type c in region r .  
Wr  is an adjustment factor to ensure that the total population in each region coincides with the known total.  
 

Thus,     ∑=
c

rchrcr WUSX     =>    The densities attributed are        
∑

=

c
chcr

r
chcr US

XUY     (7)   

and the population attributed to each commune  m  in region  r  is   

cr
c

cmm YSX ∑=*                    (8)  

Now we can “remember” that we knew the real population Xm and we can compute the ratio between the 
attributed population and the known population  

m

m
m X

X *
=ψ                            (9)  

and an aggregated difference between attributed and real population at regional or European level  

∑
∈

−=
rm

mmr XX *δ                            ∑ −=
m

mm XX *δ              (10) 

grouped 
class 

Initial coefficient  Uc CORINE 
Class 

Label 

1 32 111 Continuous urban fabric 
2 25 112 Discontinuous urban fabric 
3 1 12, 14 Industrial, commercial, transportation. 

Green urban, sport (urban infrastructure) 
4 3 21, 231 arable land 
5 5 22, 241, 242 Permanent crops,  Complex cultivation 

patterns 
 6 3 243 Agriculture, with natural vegetation 
 7 1 244, 31, 32 Agro-forestry, Forest, woodland and 

natural vegetation 
 8 0 13, 33, 4, 5 Mine, dump and construction sites, sand, 

rock and burnt areas, glaciers, wetland 
and water 
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It can be easily checked that     rr X2≤δ  . The maximum value of the deviation would happen when all the 
population is attributed to communes with real population 0.  

For each region we can compute the correlation     







=

m

cm
mcr S

Scorr ,ψρ         (11)  

If the correlation 0>crρ  , this would mean that a too high population has been generally attributed to 
communes where the CORINE Land Cover class  c  has a relatively high proportion. We can try to 
compensate this tendency by reducing the coefficient for this region and land cover. A strong correction will 
be needed if the correlation crρ is high and the disagreement rδ  is important compared with the population 

of the region rX . We have empirically chosen the next formula to reduce the disagreement: 








 ×
−=′

r

rcr
chchr X

kUU δρ1             (12) 

Where k is a tuning coefficient: a small value of k makes the correction moderate, but avoids jumping from an 
over-estimation to an under-estimation. The coefficient crU ′  raises when the correlation is negative. The 
coefficient adjustment can be repeated in an iterative way until the difference indicator  δ  becomes stable. 
To avoid some extreme effects on the coefficients, limits have been introduced so that the ratio between the 
maximum and minimum density in a commune is constrained not to exceed 10,000, except for the CLC 
classes that are supposed to have no population.  
 
3.2 Application to CLC90 and the 1991 population census.  
 
This procedure was applied with CLC90 to a set of 13 countries (some regions missing) with data of the 
1991 census. The total population of the area was 321×106 inhabitants. We have considered the regions 
known in the EU nomenclature as “NUTS2”. The acronym NUTS stands for « Nomenclature des Unités 
Territoriales Statistiques » and the level NUTS2 corresponds to administrative regions with a size that 
usually contain from 100 to 1000 communes, with an area between 2,000 km2 and 50,000 km2 and a 
population between 500,000 and 5,000,000, although a number of outliers are larger or smaller. There are 
272 NUTS2 regions in EU27.    
 

Table 2: Disaggregation coefficients with three strata of communes.  
 Urban dense Urban 

discontinuous 
Urban 

infrastructure
Arable Permanent 

crops and 
complex

Pastures Forest & 
natural 

vegetation
Stratum 1 1445.9 619.1 12.3 10.2 15.4 5.1 3.3

2 947.4 622.4 31.0 17.4 30.9 11.3 5.2
3   32.0 69.3 22.8 8.6

 
The representation with homogeneous density population in each region corresponds to a constant 
coefficient UUc = . The total disagreement δ in this case was 322×106. With the initial coefficients in Table 

1, the disagreement becomes 610241×≅δ . The application of the algorithm described above reduces the 
disagreement, that becomes stable around 610137×≅δ  without stratification of communes. With 
stratification, the disagreement has a further reduction until 61090×≅δ . The coefficients chU  are valid if 

they are multiplied by any constant K and the coefficient mW  is divided by K. The values of chU  given in 

Table 2 correspond to a choice of K such that the median of mW  in each stratum is 1, so that chU  
correspond to the median density attributed to each land cover class in each stratum.  
 

4 Reviewing parameter estimates with LUCAS data.  
 
A CLC class, for example “arable land”, is not pure for several reasons; the main reason is the scale 
limitation: patches smaller than 25 ha in an area where arable land is dominant will be included in an arable 
land polygon. If we “zoom” to a fine scale a certain percentage of the class “arable land” is residential. 
Overlaying the approx 96,000 points of the LUCAS sample on the CLC map, we get a contingency table 
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crossing CLC classes with fine scale land cover types (Gallego, 2003). From this contingency table we can 
estimate the proportion of each CLC class that has residential use. CLC classes were clustered to get a 
simplified nomenclature in 9 classes (table 3) that seems more suitable than the nomenclature previously 
used (table 1) on the basis of the proportion of residential use derived from LUCAS. 
 
We make the assumption that, in non-urban areas, the population density is approximately proportional to 
the rate cmR  of residential area:  

mch
kh

kh

cm

cm
cmcm WU

n
r

n
rY ≈≈=∝ ξ               (13) 

Where cmn  is the number of LUCAS points in CLC class c , commune m ,  and cmr  is the number of them 
that are residential. However the size of the LUCAS sample is not large enough to compute such estimates 
in each commune. We can make a global estimation of the proportion of residential land in each CLC class 
(table 3); the coefficients in the right column where used for a version of the downscaled density map, that 
we call bellow “CLC-LUCAS simple”. They are approximately derived from the % of residential land for the 
non-urban classes. For the urban classes, the % of residential area is not such a good proxy and we simply 
modified the coefficients derived in the previous version on the basis of subjective perception of the results in 
a number of known areas.  
 
 LUCAS  points suggested 

Land cover class residential total % resid. coefficients 
Urban dense 60 132 45.4 2000 
Urban discontinuous 1085 2609 41.6 500 
Other urban  72 748 9.6 150 
Artificial non residential 2 241 0.8 0 
Agricultural  576 31956 1.8 30 
Heterogeneous  272 9492 2.9 50 
Forest and agroforestry 142 30826 0.5 8 
Natural vegetation 19 13339 0.14 2 
Open spaces and water 15 7087 0.21 0 

Total 2243 96430 2.3  
Table 3: proportion of residential area in CLC classes using LUCAS 
 

5 Application of logit regression 
 
We can expect that the same non-urban CLC class (e.g. “agricultural”) has more dense population in areas 
with higher average density, i.e. the commune coefficients Wm are higher for communes with higher average 
density Dm but Wm does not grow linearly with the average population density. Let us consider the next 
question: If we select a point at random and he have some information about this point (CLC class=LCi, 
commune, altitude, etc.), which is the probability that this point has a residential land use? A good answer to 
this question would helpful improve the population density mapping. Here we only consider the land cover 
class according CLC and the average population density Dm of the commune m that contains the point. We 
assume again that, excluding the CLC class “urban dense” ( 2≥c ), the population density cmY  is 
approximately proportional to the proportion of the territory with residential use.  
 cmmcm pY λ=     with       ( ) ( )miicm DLCfLandUseLUCASpp ,"lResidentia" ===   (14)    
A usual way of modelling this type of probabilities is the logit regression:  

( ) ( )( ) ( ) cmmc
c

ccmcmcm DJppplogit εγβα +++=−= ∑ log1log        (15) 

Where Jc is an indicator function of CLC class c. (1 if the point is in class c and 0 otherwise).  
For non-urban classes, the values of pcm are generally small and the logit function is close to the simple 
logarithm. The model (15) is similar to a multiplicative model: 

( ) γεβα mcmccm Dp ×++= exp                  (16) 
A value γ=0 would suggest that the population density in a point depends only on the CLC class and not on 
the average density of the commune; this assumption is implicit in the Poisson model considered by 
Flowerdew et al (1991) in which the higher population density in certain communes would be explained only 
by the larger area of more populated land cover types (urban in particular), while the same land cover type in 
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different communes would have approximately the same density with random variations. A value γ=1 would 
correspond to a population density in each CLC class that would be proportional to the average density of 
the commune.  
 
A few attempts to fit a model with the available LUCAS data showed that the behaviour is slightly different for 
different types of communes (strata). The stratification used for the iterative method reported above has 
been tested, but a better fit was obtained with a slightly different definition of strata:  

• Stratum a: Communes in which the CLC class “urban dense” is present.  
• Stratum b: Communes with some CLC artificial area, but no “urban dense”.  
• Stratum c: Communes without any CLC artificial area.   

The explanation can be that the absence of the “urban dense” class in CLC usually indicates that the urban 
nucleus (or nuclei) of the commune does not reach the CLC size threshold (25 ha), but it still exists: it has 
been integrated in a “heterogeneous” polygon or in another dominant class (agricultural, forest…). Therefore 
the probability that a LUCAS point, that appears to be agricultural or forest in CLC,  falls in residential areas 
is increased. Communes without any artificial area reported in CLC are also a separate type.  
 
Geographical positioning of the land cover information in CORINE and of LUCAS points is not perfect. As a 
consequence, a residential LUCAS point in an urban area, but close to the boundary, can wrongly appear to 
fall in another class (agricultural, forest, etc). In order to limit the disturbances due to relative mislocation, we 
have excluded for the logit regression the LUCAS points that are less than 100 m far from CLC polygon 
boundaries. The classes “artificial no residential” and “natural vegetation” have been removed because, 
having no or very few residential points, they prevented the logit algorithm from converging.    
 
Table 4 reports the parameters obtained for the logit regression (15). We can make several comments on 
this table:  

• For communes without any artificial area, the residential density for a given CLC class strongly 
depends on the average population density of the commune (γ=0.67). The dependence is much 
smaller, but still significant (γ=0.23, γ=0.18) for communes with CLC artificial areas.  

• The central columns of table 4 provide information on communes in which the class “urban dense” is 
absent, but there is some other artificial area. If we take as a reference the residential density in the 
class “urban discontinuous”, for the same type of commune, the residential density is approximately 
34 times lower for the CLC class “agricultural”, 19 times lower for CLC “heterogeneous”, and more 
than 160 times lower for CLC “forest”. For communes with some “urban dense” class these ratios 
become around 65, 34, and 175. This suggests that the ratios estimated in section 4 might have 
been underestimated. The ratios for the other classes (artificial, natural vegetation) are based on a 
small number of residential; points and are consequently weaker.  

• These ratios are valid for CLC and cannot be directly extended to other land cover maps, especially 
if they have a different spatial resolution, although the same methodology can be applied.  

• The residential density (proportion of the territory with residential use) is a proxy for population 
density, but both densities are not exactly proportional: the average residential surface per inhabitant 
may be larger in agricultural or forest areas than in urban areas, even if we consider “urban 
discontinuous”. It has to be also taken into account that LUCAS points are coded as residential if 
they fall on secondary houses, where people are generally not censed.  

    

Communes without  
CLC

artificial With 
With 

dense  

 
Logit 

param. ( )cβexp Logit 
param. ( )cβexp Logit 

param. ( )cβexp  
α -9.2 1.0 e-4 -7.3 6.4 e-4 -7.9 3.5 e-4 
γ 0.67  0.23  0.18  
β: Urban disc.   5.9 354.4 6.7 799.5 
β: Other artificial   3.8 42.7 4.5 91.9 
β: Agricultural 2.8 17.3 2.4 10.5 2.5 12.4 
β: Heterogeneous 3.6 36.8 2.9 18.2 3.2 23.8 
β: Forest 0.2 1.3 0.8 2.2 1.5 4.6 

Table 4: Parameters obtained for the Logit model.  
 
More than 94% of the communes covering 85% of the territory do not have any pixel of the CLC class “urban 
dense” ( )0, =murbandenseS . For these communes the density per class is computed as 

( ) γβαλ mcmcm Dp ×+= exp  with the dasymetric constraint.   
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( )
( )∑

∑
=

= +
=⇒+= 8

2

8

2 exp
exp

c mccm

m
mc mcmcmm

DS
XDSX

γ
γ

βα
λβαλ         (17)  

For the communes in which the CLC class “urban dense” is present we need a different strategy, since the 
approach described above does not attribute any specific density to the CLC urban dense class. We first 
attribute a population density cmY ′  for the other land cover classes (c≥2, i.e. excluding urban dense) by simply 

averaging the densities 'cmY  for the same land cover class c in neighbouring communes without urban dense 

class. The remaining population of the commune ∑ >
′−=′

11 c cmcmmm SYXX  is attributed to the class “urban 

dense with a density mmm SXY 111 ′=′ . This provisional computation attributes in some cases an unrealistic 

value for the density mY1′  compared with the density mY2′  attributed to the class c=2 “urban discontinuous” 

(notice that the procedure computes a value of mY2′  even if the class c=2 does not exist in the commune m). 

We have introduced the empirical rule that the density  mY1′   should be between 4 and 10 times higher mY2′ .  
 
5.1 Some anomalies and correcting actions 
 
Some anomalies appear in the results obtained with the methods reported above, in particular the density 
attributed to non-urban classes is too high for a certain amount of communes.  We have considered 
anomalous an attributed density beyond a threshold (table 5) for each CLC class. Thresholds have been 
selected on the basis of the results of the disaggregation obtained with the iterative algorithm of section 2 
and the observation of communes with estimated Ycm values laying in the queues of the distribution. 9471 
communes have at least one Ycm  value beyond these thresholds and we consider the result anomalous. In 
stratum C we find 2392 anomalous communes. The likely reason in most cases is that urban areas are too 
small to be reported in CLC, and the population living in the non-reported urban areas have to be 
represented in the non-urban classes as reported by CLC. Stratum B contains 6948 anomalous communes 
and stratum A 131 anomalous communes. In strata A and B the most frequent explanation seems to be that 
dense urban areas have been photo-interpreted in CLC as discontinuous and the density in these areas has 
been underestimated with a consequent overestimation of the density in non-urban areas. Some corrections 
have been applied by reallocating population to a different class in order to stay within the threshold as far as 
possible. In stratum C densities for agricultural, forest and natural vegetation classes have been brought 
within thresholds, by allowing a density up to 500 inh/km2 in the “heterogeneous” class. After reallocations 
the number of anomalies is reduced to 3345: 47 in stratum A, 1657 in stratum B and 1641 in stratum C, 
interpreted as a consequence of the limitations of CLC for which densities had to be above the thresholds of 
table 5. The introduction of these thresholds makes the method closer to the traditional “limiting variable” 
method (Eicher and Brewer, 2001).  
 

Land cover class 
Maximum 

density 
Urban dense 100,000
Urban discontinuous 20,000
Other urban (green?) 2,000
Artificial no residential 1000
Agricultural  100
Heterogeneous  300
Forest and agroforestry 30
Natural vegetation 10

Table 5: thresholds applied for the density in different CLC classes.  
 

6 Application of the EM algorithm 
 
Flowerdew et al (1991) propose to apply the EM algorithm to estimate disaggregation coefficients. The EM 
method (Dempster, 1977) assumes an underlying probabilistic model. Here we follow the suggestion of 
Flowerdew et al. assuming that the population Xmc in land cover class c for the commune m follows a Poisson 
distribution with parameter cmcmc SU=µ ; all distributions for different communes and land cover classes are 
assumed to be independent. Each iteration of this algorithm has two steps: the E step (expectation) and the 
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M step (maximum likelihood). The E step gives an estimate of Xmc from the disaggregation coefficients 
obtained in the previous M step:   

( )
( )

( )∑ −

−

=

c
cm

t
c

mcm
t

ct
mc SU

XSUX 1

1
ˆ                (18) 

This step actually ensures that the total population attributed to pixels in the commune equals the known 
population of the commune.  
In the M step we estimate the values of Uc that give maximum likelihood to the ( )t

mcX̂  calculated in the 
previous E step. We have 
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And the likelihood is                    ( )
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For the purpose of maximization we can use the log-likelihood and disregard the denominator, since it is 
constant, although each term of the product is not. The maximum is obtained for  

( )
( ) ( )
∑
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m cm

cmm
t

mt
c S

SX
U

logˆ
         (21) 

 
This procedure has been applied with the CLC classes grouped as in the previous section and with the same 
strata. Table 6 reports the coefficients obtained.   
 

Table 6: Disaggregation coefficients with an EM algorithm and 3 strata.  
  Communes 
 Without artificial Without urban dense With urban dense
Urban dense   470.1 
Urban discontinuous  106.6 305.6
Infrastructure.  97.5 217.2
Unpopulated urban  0.11 0.00
Agricultural 1.74 2.53 0.84
Heterogeneous 3.06 3.99 0.0007
Forest  0.77 0.073 0.00
Natural vegetation 0.15 0.00 0.01
Bare land, water 0.22 0.00 0.00

 

7 Validation in Austria  
The performance of the disaggregation procedures presented above have been compared with the help of 
reference data provided by the Austrian Statistical Institute. The Austrian reference data were presented as a 
1 km resolution grid in UTM (zone 33) coordinates. They have been obtained by aggregation of individual 
dwellings on the basis of the 2005 population census.  
 
We have compared the reference data with the next dasymetric maps with 1 ha resolution:  

• Communes: the average population density of each commune is attributed to the whole commune in 
a uniform way.  

• CLC-Iterative: disaggregation with the method presented in paragraph 3.  
• Simple CLC-LUCAS: disaggregation with the method presented in paragraph 4. 
• CLC-LUCAS logit: disaggregation with the method presented in paragraph 5. 
• CLC-EM: disaggregation with the coefficients obtained with the EM algorithm as reported in 

paragraph 6.  
These 5 maps were first produced as raster grids in the INSPIRE-recommended Lambert-Azimuthal 
projection with 1 ha resolution, then re-projected into UTM to make them compatible with the Austrian data 
and generalized to 1 km2 with the same cell boundaries of the reference grid.  
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The disagreement indicator was computed as:  

∑ −=∆
j

refjmjm YY ,,            (22) 

The values obtained for the disagreement are reported in table 7. This table indicates that disaggregation of 
commune-level population density with the help of CLC roughly reduces by 50% the disagreement with 
reference data. The level of improvement is likely to change if we consider a different country and a different 
resolution of the reference data, but this comparison gives a valuable indication. The improvement changes 
very little with the disaggregation procedure. The introduction of LUCAS data to tune the behaviour of CLC 
classes improves the results, but only slightly. The introduction of the logit model provides a further tiny 
improvement. 
 
 
Table 7: disagreement of different dasymetric maps with reference data in Austria 
Dasymetric map disagreement 
Communes (non disaggregated) 8.96 * 106 
CLC-iterative 4.55 * 106 
CLC-LUCAS simple  4.39 * 106 
CLC-LUCAS logit 4.35 * 106 
CLC EM 4.50 * 106 
 

8 Detecting geographic patterns of scattered population.  
 
In some European areas we can see numerous scattered houses outside the urban nuclei. In other areas 
the population is concentrated in large or small nuclei with very few houses in between. The density of 
LUCAS residential points in non-artificial CLC classes can help us to map these different landscape types, 
although the sampling density is relatively low.  
Figure 1 represents the LUCAS points of scattered residential land, defined as land with residential use in 
CLC-non-artificial areas. The shaded background represents the density obtained by smoothing the 
proportion with a moving window of 200 km. Such smoothing is imposed by the low density of the sample, 
but may introduce some distortion, eliminating in particular landscape types that cover an area smaller than 
the window width.    
 
The residuals of the logit model can be smoothed to produce a slightly different mapping of the 
phenomenon: a light-coloured area in Figure 2 indicates a low density of scattered houses without taking into 
account the population density of the region. A light-coloured area in Figure 2 represents a density of 
scattered housing lower than what would be expected for the population density of the region. For example 
the density of scattered housing is low in northern Scandinavia in absolute terms, but it is relatively high 
taking into account the low population density of this region. In both maps the meaning of “scattered” relates 
to the CLC specifications, i.e. it includes small agglomerations of less than 25 ha.  
 

9 Discussion  
 
This paper illustrates the method used to produce the population density grid of EU27 (plus Croatia) with a 
resolution of 1 ha that is currently distributed by the EEA without charge for non-commercial purposes. 
Population data of the 2001 census have been merged with CORINE Land Cover to produce a finer scale 
representation. The point survey LUCAS was used to tune in different ways the coefficients for the 
downscaling models. LUCAS-2001 data are only available for EU15. This means that the likely ratio between 
population density in different CLC classes in EU15 has been applied to the rest of EU27. This choice is 
debatable, but was imposed by the limitations of data availability.  
 
The validation by comparison with a reference population density grid available for Austria, with 1 km 
resolution, has shown that the inaccuracy of the homogeneous density representation per commune is 
reduced by roughly 50% thanks to the introduction of CLC. The validation results suggest however that the 
inaccuracy does not change much with the different methods tested. This confirms the observation made by 
Martin et al (2000): the quality of the land cover map is more important than the choice of the downscaling 
algorithm.  
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Figure 1: Density of scattered residential land use 
derived from LUCAS and CLC 

 
 

Figure 2: Smoothed residuals of the logit regression 
for the non-urban residential area  

 
 

 
 
   
 
The two-class method (Langford, 2007), that attributes all the population to the urban class is not directly 
applicable because more than 30,000 communes do not have any urban CLC class, but an adaptation would 
be possible for further comparison. The geographical analysis of the residuals of the logit model (section 8) 
can give additional hints to improve the dasymetric maps.  
 
Further analysis might be needed on the comparison with reference data to understand the limitations of the 
downscaling procedure, but the first assessment indicates that the population density can be very different 
for different grid cells in the same commune and the same CLC class. The way to improve the results might 
be the introduction of new information of layers, such as night-time light emissions, as made by Briggs et al 
(2007), although the coarse resolution of the available products of night-time light is probably a serious 
limitation.  
 
The results reported in this paper relate to CLC. For example when we talk of population in agricultural land, 
this refers to the area reported as agriculture by CLC. Part of the inaccuracy that cannot be removed is due 
to the limitations of CLC.  
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